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A flow-excited Helmholtz resonator was investigated experimentally and theoretically.
The analysis was focused on a simplified momentum balance integrated over the region
of the orifice. The resulting expressions were used to guide an experimental programme
designed to obtain measurements of the resonator pressure under flow excitation, as
well as the dynamics of the shear layer in the orifice using particle image velocimetry
(PIV). The pressure measurements indicated a number of distinctive features as the
flow speed varied. The PIV results provided a detailed representation of the shear layer
vorticity field, as well as the equivalent hydrodynamic forcing of the resonator. The
forcing magnitude was found to be roughly constant over a range of flow speeds. A
model was proposed that provides a prediction of the resonator pressure fluctuations
based on the thickness of the approach boundary layer, the free stream speed and the
acoustic properties of the resonator. The model was shown to provide an accurate
representation of the resonating frequency as well as the magnitude of the resonance
to within a few decibels.

1. Introduction
This paper presents a detailed study of a flow-excited Helmholtz resonator. An

example of this phenomenon is the resonance that occurs when blowing over the
orifice of a glass bottle. The same physical process is present when an automobile is
travelling with a single window lowered. This is often termed ‘window buffeting’ and
results in an uncomfortable level of cabin pressure fluctuations.

A ‘Helmholtz resonator’ is a device in which a volume of compressible fluid is
enclosed by rigid boundaries with a single, small opening (Kinsler et al. 2000). The
resonator is easily modelled by a second-order mass-spring system analogy, where the
fluid in the region of the orifice acts as the effective mass, and the compressibility
of the fluid in the volume acts as a stiffness. Acoustic radiation and viscous effects
both lead to an effective damping. The resonator natural frequency is given by
fhr = (c/2π)

√
S/Vl, where S is the area of the orifice; l is the effective neck thickness;

V is the volume of the resonator; and c is the speed of sound. Near this frequency,
a small pressure disturbance can produce a large-magnitude velocity fluctuation at
the orifice and thus a large pressure fluctuation within the resonator. The acoustic
wavelength that corresponds to the natural frequency is large compared to the
dimensions of the resonator. Specifically, λ� 3

√
V, such that the unsteady pressure
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Figure 1. Schematic of a simplified Helmholtz resonator with knife-edge opening.

inside the volume can be considered to be spatially uniform. Similarly, λ� L, where
L is the characteristic length of the orifice, and so the region outside of the enclosed
volume can be modelled acoustically with the orifice acting as a compact baffled piston.

The flow-excited Helmholtz resonator geometry considered here is shown in figure 1.
This configuration shows a grazing flow in which the wall boundary layer separates
at the sharp edge and flows over the resonator orifice. The vorticity forms a shear
layer that is unconstrained in the cross-stream direction over the the orifice length, L.
This flow is well understood to be linearly unstable to disturbances at discrete values
of the dimensionless frequency: f L/U (see e.g. Howe 1997; Chaterllier, Laumonier &
Gervais 2004). Flow-excited resonance occurs when one of the hydrodynamic
instability frequencies, or ‘modes,’ are close to the resonator natural frequency. The
primary independent variable is typically the free stream velocity of the grazing flow,
U . In other words, the pressure fluctuations in the resonator are the maximum at
the specific velocity at which the time scale of the most unstable shear-layer mode
is equal to the time scale of the resonator volume. In most applications, notably the
glass bottle and automobile window, the velocity at which the fluctuations are the
maximum will be at a relatively low Mach number, say Ma < 0.1.

It is important to note the similarities and differences between the flow-excited
Helmholtz resonator and a number of similar configurations. Foremost is the classic
problem of high Mach number flow over a shallow cavity studied by Rossiter (1964).
This geometry exhibits a shear layer disturbance that grows over the cavity opening
and impinges on the cavity trailing edge. This interaction results in a large pressure
fluctuation that travels upstream as an acoustic wave. The acoustic disturbance causes
the next disturbance in the shear layer, which leads to self-sustained oscillations. The
resonance, or ‘Rossiter mode,’ exists when the instability time scale of the shear layer
is close to the acoustic travel time from one end of the cavity to the other. As a result,
the acoustic wavelength and the orifice length scale are of the same order (λ≈ L). Note
also that the feedback disturbances in the shallow cavity problem necessarily travel
in a direction parallel to the plane of the shear layer. This is an important contrast
to the present problem in which the resonator volume responds with a disturbance
that is perpendicular to the shear layer.

There are a number of additional configurations that share some characteristics
with the presently considered boundary conditions. For example, shallow cavities,
deep cavities, branched pipe flow and gap flows all exhibit some type of flow-excited
resonance. A thorough review was given by Rockwell & Naudascher (1978). More
recent work involving shallow cavities includes that of Graf & Durgin (1993) and
Chatellier et al. (2004). Note, however, that the flow-excited Helmholtz resonator is
considered to be unique and distinct from similar configurations involving shallow
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cavities and the like. A recent review of dynamics and control of shallow cavity flow
is given by Rowley & Williams (2006).

Early work that was focused specifically on flow over a Helmholtz resonator
described the basic features of the resonator pressure fluctuations with a variety of
geometries and inflow conditions (Panton & Miller 1975; Elder, Frabee & DeMetz
1982). Nelson, Halliwell & Doak (1981) provided detailed measurements of both the
resonator pressure and the flow field in the vicinity of the orifice. Flow visualization
and velocity measurements were interpreted to indicate that the resonance is caused
by the shedding of a single discrete vortex from the orifice edge, which travels over
the opening during one cycle of the oscillation. Nelson et al. (1983) later developed
a detailed analysis of the flow field based on both linear momentum and energy
principles. They concluded that the unsteady velocity–vorticity cross-product was
the primary variable linked to the self-sustained resonance. More recent work has
focused on the experimental and numerical determinations of the resonator pressure
fluctuations under a wide variety of boundary conditions. For example, the effects of
the orifice geometry has been studied by Panton (1990), Dequand et al. (2003a, b),
and Amandolèse et al. (2004).

Methods for predicting the resonator pressure have received significant attention.
One method, originally proposed by Elder (1978) for a deep cavity geometry, is
the framework of a feedback loop system analysis. The hydrodynamic forcing was
considered a ‘forward gain function,’ and the resonator acoustics were considered
a ‘backward gain function.’ The resonator pressure amplitude was then found by
equating the amplitude and phase of the two gain functions. Mast & Pierce (1995) later
applied a similar technique, termed ‘describing-function theory,’ in which the forward
gain function was described analytically by the dipole-like interaction of the vorticity
with the trailing edge of the orifice. Based on a dimensionless tuning parameter,
termed β , the theory was able to accurately capture the resonator pressure amplitude
as a function of free stream speed. Kook & Mongeau (2002) later developed a similar
analysis but modelled the forward gain function on a point vortex model. They
also found that a tuning parameter, termed α, that allows the theory to accurately
predict the resonator pressures under a wide variety of flow conditions could be
found.

The most recent literature on the subject of flow-excited Helmholtz resonators has
included a number of large-scale numerical studies (Inagaki et al. 2002; Mallick,
Shock & Yakhut 2003; Crouse et al. 2006). The agreement with experimental data
varied and in some cases required arbitrary scaling of the data. For example Mallick
et al. (2003) multiplied the free stream speed of Nelson et al. (1981) by a factor
of 15/22 in order to demonstrate agreement with the predicted resonator pressure
values. They attributed this to be a result of the effects of boundary layer thickness
on the effective speed of the shear layer.

The objective of the present research is to provide a complete description of the
fluid dynamic characteristics of a flow-excited Helmholtz resonator. The description
of the problem will first be given in the context of a linear momentum balance.
The resulting expressions will be shown to provide a simple relationship between
the shear layer dynamics and the compression of the resonator fluid. Detailed
measurements of the resonator pressure as well as particle image velocimetry (PIV)
measurements in the region of the orifice will be described in the context of the terms
derived in the momentum balance. Lastly, a predictive methodology will be described
based on the results of the detailed measurements. The theory will be validated against
measurements available in the open literature.
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Figure 2. Schematic of the control volume for momentum analysis.

2. Theoretical analysis
Consider a resonator with a knife-edge rectangular window as shown in figure 2.

The streamwise window length is L; the area of the window is S; and the resonator
volume is V. A useful starting point for the analysis is the Euler equation in Crocco’s
form given by

∂V
∂t

+
1

ρ
∇p = −ω × V − ∇ |V |2

2
. (2.1)

The control volume of interest is outlined in figure 2, with respective corners labelled
(ABCD). The flow is assumed to be uniform along the spanwise direction; so only
a two-dimensional cross-section is drawn. The upper (BC) and lower (AD) sides of
the volume are placed such that the flow can be considered irrotational at these
boundaries. The vertical component of Crocco’s equation can then be integrated over
the area enclosed by the four sides (i.e. in the plane of figure 2) to yield∫

ρ
∂v

∂t
dA + (pBC − pAD )L = −

∫
ρuωz dA − 1

2
ρ
(
|V |2BC − |V |2AD

)
L. (2.2)

Here ωz denotes the spanwise vorticity component, and u and v are respectively the
streamwise and vertical velocity components. The pressure along (BC) and (AD) is
assumed to be uniform.

The self-sustained resonance is periodic, and so it is instructive to consider the
Fourier transform of (2.2):∫

ρ

(
∂v

∂t

)∧

dA + (p̂BC − p̂AD )L = −
∫

ρ(uωz)
∧ dA, (2.3)

where the superscript ∧ denotes a Fourier transformed variable. Note the unsteady
components of velocity along (BC) and (AD) are neglected, since both are considered
to be far from the unsteady shear layer motions, and the acoustic velocity is also
considered to be small. The unsteady pressure, p̂BC , is a result of incoming and
outgoing acoustic waves. Incoming acoustic waves will result in the excitation of the
resonator and are denoted as p̂exc . Outgoing waves are a result of acoustic radiation
from the orifice and denoted as p̂rad . The unsteady pressure p̂AD represents the
pressure inside the resonator and is denoted as p̂res . Division of (2.3) by p̂resL yields

p̂exc + 1
L

∫
ρ(uωz)

∧ dA

p̂res

=
1

p̂resL

[
−

∫
ρ

(
∂v

∂t

)∧

dA − p̂radL + p̂resL

]
≡ Z∗. (2.4)

The left-hand side of (2.4) represents the ratio of the total external excitation to
the resonator pressure. The two terms in the numerator on the left-hand side can
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be interpreted as the external excitation of the resonator due to incoming acoustic
waves and the ‘hydrodynamic forcing’ due to the unsteady vorticity in the shear layer,
respectively.

The righthand side is the transfer function of the resonator system, denoted as Z∗,
and can be shown to be equivalent to the non-dimensional mechanical impedance of
the system. Specifically, the righthand side of (2.4) can be approximated by a lumped
element model for an ideal Helmholtz resonator in the manner described: First, the
area integral of the unsteady vertical component of velocity represents the unsteady
inertia of the fluid inside the control surface (per unit width W ). One can consider
this in terms of a net or bulk inertia by defining (M/W )v̄ ≡

∫
ρv dA. Here M is the

equivalent mass of the control volume. The unsteady inertia can be represented by
−(M/W )(d2ξ/dt2), where ξ is the vertical effective displacement of the mass with the
downward direction (pointing into the resonator) as positive.

The radiation pressure can be written in terms of the orifice fluid displacement
as pradL = −(Rr/W )dξ/dt based on a Rayleigh integral, where Rr is an effective
radiation resistance (see Crighton et al. 1992). The resonator pressure p̂res can be
related to the displacement of ξ̂ by (Dowling & Ffowcs Williams 1983),

p̂resL = (K/W )ξ̂ , (2.5)

where the stiffness K is defined as (ρ0c
2S2)/V, and ρ0 is the equilibrium density.

Substituting all of the above representations into Z∗ leads to the lumped element
model (LEM) representation

Z∗
LEM ≡

M

(
d2ξ

dt2

)∧

+ R

(
dξ

dt

)∧

+ Kξ̂

Kξ̂
; (2.6)

R represents the summation of the radiation resistance (Rr ) and a net viscous
resistance arising from the losses due to the wall. The amplitude ξ̂ can be removed
from (2.6) to yield

Z∗
LEM =

−4π2f 2M + i2πf R + K

K
= −f ∗2

+ if ∗/Q + 1, (2.7)

where f ∗ denotes the non-dimensional frequency f/fhr . The resonator natural
frequency fhr =

√
K/M/2π, and the quality factor Q =2πfhrM/R. Z∗

LEM represents
the non-dimensional mechanical impedance of a standard second-order system.

A simplified expression for the momentum balance is obtained for the conditions
in which there is no grazing flow over the orifice. Specifically, when only acoustic
excitation is present (2.4) reduces to

p̂exc

p̂res

= Z∗. (2.8)

This relationship is identical to the standard Helmholtz resonator equation (Kinsler
et al. 2000). If the acoustic excitation pressure is zero, then the flow-excited resonance
given by (2.4) simplifies to

p̂∗
res = F̂ ∗/Z∗, (2.9)

where

F̂ ∗ =

∫
ρ(uωz)

∧ dA
1
2
ρU 2L

, p̂∗
res =

p̂res

1
2
ρU 2

. (2.10)



6 R. Ma, P. E. Slaboch and S. C. Morris

The integrated velocity–vorticity product, denoted here as F̂ ∗, is interpreted to
be the dimensionless hydrodynamic forcing that is responsible for exciting the
resonator. The magnitude of F̂ ∗ could depend on a number of independent variables,
including the geometry of the orifice, the characteristics of the resonator volume and
the grazing flow velocity. As such, (2.9) represents the full (nonlinear) momentum
balance despite its apparent simplicity. It is of interest to note that the result given by
(2.9) is similar to the ‘describing function theory’ formulation described by Mast &
Pierce (1995) and Kook & Mongeau (2002). A derivation is provided in the appendix.

An important assumption that will be employed throughout this paper is that the
function Z∗(f ) is independent of both the flow velocity and the amplitude of pres . This
approximation allows for the direct measurement of Z∗(f ), using acoustic excitation
(2.8), with subsequent application of the measured function in (2.9). Several results in
the literature (e.g. Walker & Charwat 1982; Hersh & Walker 1995) suggest that the
grazing flow does not appreciably change the impedance for velocities in the range
U/f L <O(10). The assumption that the impedance is not sensitive to the magnitude
of the fluctuations has been verified by Ingard & Ising (1967).

Given that direct measurements of the resonator bulk impedance function are
available (as described in the following section), (2.9) suggests that the understanding
and prediction of flow-excited resonators can be reduced to the study of F̂ ∗. Later it
will be shown that the grazing-flow response is essentially harmonic with the peak
frequency fp . This value, represented as f ∗

p = fp/fhr , will be a primary dependent

variable of interest. The magnitude of F̂ ∗(f ∗
p ), as well as of Z∗(f ∗

p ), determines
the magnitude of the unsteady pressure in the resonator. The primary independent
variable of interest will be shown to be the dimensionless flow velocity U ∗ ≡ U/fhrL.

3. Resonator acoustic response
The impedance of the resonator, Z∗, was obtained using acoustic excitation. The

resonator was placed underneath the empty wind tunnel test section of cross-section
61 cm × 61 cm and a length of 1.83 m. The tunnel inlet consisted of flow-management
screens and a contraction located upstream of the test section. Downstream of the
test section a diffuser decelerated the air and led to the primary fan. The floor of
the test section was the upper wall of the resonator. The resonator had a volume
of 0.15 m3 with a square cross-section of 50 cm × 50 cm and a height of 59 cm. The
12.5 cm × 12.5 cm orifice was cut from a 0.16 cm thick aluminium plate. The edges
of the orifice were machined to a 30o angle to form sharp edges. Two 12.5 mm
Bruel & Kjaer type 4197 microphones were sampled at a rate of 50 kHz for 84 s.

The resonator impedance was obtained through a two-step process to obtain
pres/pexc , where the excitation pressure (pexc) includes only the incident pressure. The
measurement was conducted in situ in the wind tunnel with no flow. A loudspeaker
was placed at the inlet of the wind tunnel with white noise excitation. The first
step, shown schematically in figure 3(a), used a reference microphone placed in close
proximity to the speaker. A second microphone was placed inside the resonator. The
frequency-dependent ratio pres/pref was measured with the orifice opened. In the
second step the reference microphone remained at the same location, and the second
microphone was located in the wind tunnel test section with the orifice blocked.
This measurement provided the ratio pexc/pref . The function pres/pexc , was obtained
by dividing the two transfer functions measured in the first and second steps. This
method of determining the resonator impedance was used by Kook (1997).
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Figure 3. Two-step measurement of the resonator response to acoustic excitation:
(a) step one with orifice open; (b) step two with orifice closed.
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Figure 4. (a) Amplitude ratio and (b) phase angle of resonator acoustic response to acoustic
excitation. Grey line denotes the model 1/Z∗

LEM .

The amplitude and phase of the measured resonator response (1/Z∗) are shown
in figure 4. The Helmholtz resonator frequency fhr was determined to be 46 Hz,
and the quality factor Q was found to be 11. The value of fhr is defined as the
frequency of the peak of the response, while Q is the magnitude of the response
at that frequency. The modelled response 1/Z∗

LEM is also plotted as a grey line in
figure 4 and accurately represents both the amplitude and phase of the impedance at
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Figure 5. Resonator interior sound pressure level at different free stream velocity.
(a) U ∗ = 1.2; (b) U ∗ = 2.91; (c) U ∗ = 5.31.

frequencies in the range close to fhr . However, this model was not able to accurately
take into account the additional features observed that result from the wind tunnel
and surroundings. For example ‘peaks’ observed near f ∗ = 1.7 and 2.8 are acoustic
features of the resonator/wind tunnel system that were not found when the resonator
was tested separately. Since the resonator was in the tunnel for the flow-excitation
tests, both the measured Z∗ and Z∗

LEM will be considered in the following sections.

4. Flow-excited resonance
The resonator pressure fluctuations with flow excitation are described in this section.

The primary independent variable was the normalized free stream velocity, U ∗. The
boundary layer profile at the upstream leading edge was measured using a single hot-
wire anemometer in order to document the inlet boundary conditions. The boundary
layer thickness was found to be 1.65 cm, or δ/L =0.13. A single microphone was
placed inside the resonator. The tunnel velocity was varied from zero to 45 m s−1

in increments of 0.28 m s−1, using a computer controlled fan. The microphone was
sampled at a frequency of 10 kHz for 13 s at each flow speed. A delay of 10 s was
imposed between speed increments in order to allow the tunnel to adjust to the new
speed. Measurements were checked for repeatability.

Figure 5 shows the measured sound pressure level (SPL) as a function of f ∗ at
three different flow speeds, U ∗ = 1.2, 2.91 and 5.31. At U ∗ = 1.2, a dual-mode pattern
was observed in the spectrum. The first and second modes were observed at f ∗ = 0.54
and f ∗ = 1.07 respectively. At U ∗ = 2.91, the first mode became dominant at f ∗ = 1.07
with a strong peak amplitude of approximately 130 dB. As the flow speed further
increased to 5.31, an elevated broadband sound was observed, with no clear sign of
resonance.
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Figure 6. Autospectra of the resonator pressure normalized by the free stream dynamic
pressure. The dashed–dotted line represents f = fhr .

A complete representation of the speed dependence can be obtained by presenting
the spectral results as a contour plot as shown in figure 6. The abscissa is U ∗;
the ordinate represents the frequency normalized as f L/U . The contour variable
represents the square root of the spectral values integrated over 1 Hz bins and
normalized by the free stream dynamic pressure. The natural hydrodynamic instability
frequencies are marked on the figure. These were evaluated from the empirical
relationship of Rossiter (1964):

f L

U
=

n − α

Ma + 1/κ
, n = 1, 2, 3, . . . , (4.1)

where Ma is the Mach number; α is a phase delay parameter; and κ is the convection
velocity coefficient. The values α =0, κ =0.38 were used for the present calculations.
The value of α is typically used to adjust the frequency for any phase delay that
occurs between the hydrodynamic forcing and the acoustic feedback. In Rossiter’s
high-speed cavity α = 0.25 was found to match the data well. Because the present
problem involves the direct interaction of the shear layer with the vertical motion
of the resonator orifice, it is argued that there is no phase delay, and thus α = 0 is
appropriate. The value κ = 0.38 was based on direct measurements and modelling
presented later in this paper. Based on these parameters, the first three modes are
predicted to occur at values of f L/U = 0.37, 0.87 and 1.37, respectively (shown
as horizontal dashed lines in figure 6). Peak resonance of these modes is expected
to occur at free stream velocities, where the hydrodynamic instability frequency is
close to fhr . The contour representing f = fhr is shown as a dashed–dotted line in
figure 6. Large magnitudes are observed in the pressure contours at the expected
speed/frequency values.

A number of detailed features can be observed in the spectral contours in addition to
the basic resonance phenomenon. The first-mode resonance is observable at low speeds
(U ∗ < 0.7). The first, second and third modes can be seen in the range 0.7 <U ∗ < 1.4.
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At higher speeds (1.4 < U ∗ < 2.2) only the first mode is active, and resonance is found
to occur at values of f L/U slightly greater than the expected 0.37 value yet lower
than fhrL/U . As the speed increases further the resonance follows fhr closely, until
the peak amplitude point is reached at f L/U ≈ 0.37, U ∗ =2.72 as predicted by (4.1).
Above this speed the resonance is again observed to occur at a frequency that is
between the predicted hydrodynamic frequency and the resonator frequency. The
resonance in the range 3 <U ∗ < 4 shows a number of ‘jumps’ in both amplitude and
frequency. Similar behaviour can be observed in most of the measurements available
in the literature (e.g. Kook & Mongeau 2002; Meissner 2005). In a later section it
will be shown that these jumps are a repeatable feature of the flow-excited resonance
that is related to the multiple local maxima in the Z∗ function noted earlier.

The absolute frequency and magnitude of the resonance shown in figure 6 can be
observed more clearly by integrating the spectral densities in the region of the peak
resonance as

p∗
m =

2

ρU 2

[∫ 1.2fp

0.8fp

Gpp(f ) df

]1/2

. (4.2)

These results are shown in figure 7. The integration limits noted were found to capture
the majority of the modal energy without incorporating excess background noise and
the like. The values of fp were found as the maximum in the spectra at each mode
as a function of U ∗.

An interesting feature of the pressure measurements that is observable in figures 5–7
is the co-existence of both first-mode and second-mode resonance at speeds between
U ∗ = 1 and U ∗ = 1.4. The time series of the unsteady resonator pressure was
investigated at U ∗ = 1.2 using a wavelet analysis. Specifically, the spectrogram
magnitude WX(f, t) is shown in figure 8(a). Two bands centred at 50 Hz (second
mode) and 28 Hz (first mode) were observed. In figure 8(b), the wavelet spectral
energy was integrated over a narrow bandwidth near the mode-centre frequencies.
The contours as well as the integrals show that the two modes do not co-exist at any
given time but rather switch back and forth between the two modes. The correlation
coefficient between the two time series shown was found to be −0.49. Note that this
insight cannot be obtained from the spectral results alone (e.g. figure 5a), since the
spectral density is an average that cannot distinguish between two frequencies that
exist simultaneously and the intermittent mode switching that was observed here.
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Figure 8. (a) Contours of Morlet wavelet power spectrum WX(f, t) at U ∗ = 1.23. (b) Nor-
malized (by its mean value) integral of WX(f, t) with respect to f for each mode. Black line:
first mode (15<f < 35 Hz); grey line: secnd mode (35<f < 80 Hz); correlation coefficient
between the two was −0.49.

5. Flow field observations
PIV was used to observe the flow field characteristics in a region near the orifice.

A LaVision PIV system with two cameras with resolution of 2048 pixels × 2048
pixels each were used for the experiments. The cameras were mounted adjacent to
each other outside of the wind tunnel and configured for two-component planar
measurements. The purpose of using two cameras was to increase the spatial domain
without sacrificing resolution. The cameras were angled downwards, such that the
field of view extended 3.75 cm into the resonator. A dual-pulsed Nd:YAG laser was
mounted on top of the test section. Laser sheet optics were placed on the end of the
laser to form the beam into a sheet for PIV imaging. One thousand realizations of
the flow were acquired at five flow speeds. The resonator was seeded independent of
the free stream before the start of data acquisition.

A microphone was placed in the centre of the floor of the resonator and was
sampled simultaneously with the PIV images. The microphone data were sampled at
a rate of 33 kHz for 250 ms, starting at 125 ms before the laser was triggered. The
laser trigger was also recorded, so that the exact time of the PIV acquisition was
known with respect to the microphone time series. A representative time series for
the pressure and laser trigger are shown in figure 9.

The resonator pressure signal, as well as the flow field in the vicinity of the orifice,
is nearly periodic with a frequency equal to fp . A useful technique for investigating
the flow field is to construct phase-averaged quantities from the PIV measurements.
Specifically, a phase value was assigned to each individual PIV realization based on the
resonator pressure time series. These phase designations allowed the 1000 realizations
obtained at each flow speed to be divided into phase bins. The realizations in each
phase bin were then averaged to obtain statistically converged velocity maps of the
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Figure 9. Representative time series of raw voltage for (a) resonator pressure and
(b) laser trigger.

flow, with each phase bin having approximately 100 images. The resulting statistics
can be considered to be time series of the flow field that have been filtered to pass
the mean flow and the resonance frequency harmonics.

The shear layer in the region of the orifice was found to be best observed using the
spanwise component of vorticity. These values were computed using a second-order
finite difference method applied to the phase-averaged velocity maps. Figure 10 shows
contours of ωzL/U for three flow speeds, corresponding to U ∗ = 1.58, 2.64 and 3.70
in columns (b–d ) respectively. Figure 10(a) shows the phase of the pressure oscillation
for the row of images with the the first row corresponding to the peak pressure; x

and y are respectively the streamwise and cross-stream coordinates with their origin
located at the upstream edge.

A number of features can be observed in the vorticity field for the three cases shown.
The lowest speed (U ∗ =1.58) corresponds to p∗

m = 0.18. The vorticity in the range
0 <x/L < 0.3 appears to show little unsteadiness in the magnitude of the vorticity, with
no observable cross-stream movement of the shear layer. The region 0.3 <x/L < 0.6
shows significant movement, or ‘flapping’ of the shear layer, with a corresponding
unsteadiness in the vorticity magnitudes. Further downstream (x/L > 0.6) the vorticity
appears to periodically gather into diffuse regions and ‘pinches off’ the main shear
layer.

The speed U ∗ = 2.64 corresponds to the highest pressure fluctuations in the
resonator, p∗

m = 0.4. In contrast to the lower speed, the magnitude of the vorticity
and the cross-stream location of the shear layer fluctuate significantly in the region
0 <x/L < 0.3. The three lower phases indicate that the vorticity appears to ‘roll up’
into a circular, vortex-like structure at the streamwise location x/L ≈ 0.4. The vortex
forms at a cross-stream location that is slightly lower than the plane of the resonator.
As this vorticity convects in the streamwise direction it appears to move into the
resonator volume. As this occurs the vorticity that remains in the field of view (see
the top phase plot in figure 10c) forms a relatively thin sheet that extends over the
entire orifice.

The highest speed (U ∗ = 3.7) corresponds to p∗
m =0.1. Not surprisingly, the vorticity

field indicates significantly less unsteadiness compared to the lower speeds. The
vorticity in the region 0 <x/L < 0.4 shows very little cross-stream movement. The
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vorticity magnitudes fluctuate only slightly in the region 0.4 <x/L < 0.6, with larger
levels of ‘flapping’ shown to occur only near the downstream edge of the orifice. The
structure roughly resembles a discrete vortex in the lowermost phase plot at x/L ≈ 0.7.

It is of interest to note that most theoretical modelling of the vorticity field
considers the flow to be represented either by a perturbed vortex sheet or as a single
discrete vortex. The vortex sheet model is used by Elder (1978), Howe (1981) and
Chaterllier et al. (2004). These models typically ignore the cross-stream distribution
of the vorticity by modelling the shear flow as an infinitely thin vortex sheet. The
cross-stream location of the sheet is assumed to be periodic in time, with the shape of
the sheet dictated by either a prescribed spatial distribution or a set of eigenfunctions.
The advantage of this model is that it provides an analytical formulation that can be
solved in order to determine the natural instability characteristics of the orifice shear
layer. In contrast, the discrete vortex model typically assumes that all of the vorticity
in the region of the orifice is rolled up into a single vortex core that convects past
the orifice. This type of modelling has been used by Nelson et al. (1983), Bruggeman
et al. (1991), Mast & Pierce (1995), Meissner (2002) and Kook & Mongeau (2002). The
advantages of the discrete vortex model are the relative simplicity of the conceptual
framework, as well as the ability to model the unsteady forcing. For example Kook &
Mongeau (2002) considered the hydrodynamic forcing to be a result of a single vortex
passing over the orifice in a given period of the oscillation. The data presented in
figure 10 suggests that neither the vortex sheet model nor the discrete vortex model are
qualitatively accurate representations of the true vorticity field. Rather, a combination
of the two models seems appropriate. Specifically, the upstream region of the orifice
resembles a flapping sheet of vorticity in all the speeds shown. The aft region of the
orifice appears to show the formation of a single, discrete vortex structure, which
partially detaches from the remainder of the vorticity in the region.

A simple view of the time-dependent vorticity magnitude can be obtained by
integrating the vorticity values in the cross-stream direction to obtain the circulation
density as a function of the streamwise distance and phase angle:

γ (x, φ)∗ =

∫
ω∗

z (x, y, φ) d(y/L), (5.1)

where the values are normalized such that the time average value is given by γ̄ ∗ =1.
The phase variations in γ ∗ are shown in figure 11 for the peak resonance speed of
U ∗ = 2.64. The five phase values shown are the same as those shown in figure 10.
The circulation density plots show a distinct local maximum near the upstream edge
of the orifice in the first phase value shown (i.e. maximum resonator pressure). This
accumulation of vortical fluid convects at a relatively constant speed across the
domain, increases in circulation and grows in size before leaving the field of view
at the downstream side of the orifice. As the vortex motion develops and convects
across the opening the circulation density at other locations does not fall to zero, as
in the point vortex model, but remains at approximately 0.5 throughout the cycle.

A parameter of significant interest in the literature and for the following section
is the convection speed of the vorticity. Graf & Durgin (1993) found Uc = 0.3U by
looking at the measured vortex position by using LDV. Bruggeman (1987) found
values close to 0.4U and suggested that the value is due to the boundary layer
thickness effects. Kook & Mongeau (2002) used flow visualization and found a value
of 0.48U . Two approaches were used with the present measurements to obtain the
net convection speed. First, the speed of the large-scale vortex motion was obtained
by tracking the local maximum of the circulation density as shown in figure 11. The
speed was calculated as an average over the cycle and normalized by the free stream
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Figure 12. Convection speed as a function of U ∗: ‘�’ represents Uc from circulation density;
‘×’ represents Uc from (5.2); dashed line represents Uc = 0.5U .

velocity. These measurements are shown in figure 12. At lower free stream speeds
the vortex velocity is nearly equal to U/2. However, closer to the peak resonating
speed the vortex motion is considerably slower, with a minimum value observed to be
approximately 0.32U . At higher speeds at which the formation of the discrete vortex
is less pronounced the speed was found to be slightly less than U/2.

A second method of determining the convection speed can be found from

Uc =
1

Γ

∫
uωz dA, (5.2)

where the circulation and area integral are evaluated over the control volume shown
in figure 2. This definition of the convection speed provides a weighted average of
the velocity of the vortical fluid over the orifice. These calculations are also shown in
figure 12. The measurements indicate that the vorticity as a whole travels very close
to the value of U/2 regardless of the free stream velocity. This equation takes into
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account the vorticity in both the ‘vortex sheet’ and the ‘point vortex’ regions; so it is
thus indicative of the convection speed of the vorticity as a whole, not the convection
speed of the vortex alone. Additional commentary regarding the convection velocity
will be given in the following section in the context of predicting the resonator
pressure fluctuations.

Perhaps the most significant benefit of the PIV measurements is the ability to
acquire direct measurements of the hydrodynamic forcing term F̂ ∗ defined in (2.9).
The magnitude of F̂ ∗ measured at five flow speeds is shown in figure 13. The data
indicate that there is little change in the magnitude of F̂ ∗. In other words, despite
the significant (O(10)) changes in the resonator pressure with speed – and hence
similar changes in the total vertical velocity of the shear layer – the unsteady forcing
of the system is relatively constant. The mean value measured was |F̂ ∗| = 0.032. As
suggested earlier, this is equivalent to the describing function theory in which the
forcing parameter (β in Mast & Pierce 1995 or α/Stφ in Kook & Mongeau 2002) is
assumed to be a constant.

A simple approximation to the forcing term can be made if the streamwise
component of velocity in (2.9) is assumed to be a constant convection speed Uc = U/2,
such that

F̂ ∗ ≈ Uc

U/2

∫
ω̂z

U/L

dA

L2
=

Uc

U/2
Γ̂ ∗ = Γ̂ ∗|Uc=U/2. (5.3)

This approximation is shown to be reasonable in figure 13, particularly for the higher
speeds (U ∗ > 2). The usefulness of this approximation stems from the interpretation
that the shear layer forcing can be reduced to the Fourier transform of the circulation
contained in the orifice evaluated at the resonating frequency (fp). This can be
further broken down into the unsteady vorticity flux into and out of the orifice
region. Specifically,(

dΓ

dt

)∧

in

=

∫
x=0

(uωz)
∧ dy,

(
dΓ

dt

)∧

out

=

∫
x=L

(uωz)
∧ dy (5.4)

were evaluated from the PIV measurements, and their non-dimensional results are
shown in figure 14. These data show in a more quantitative way how the vorticity
is convected into and out of the domain as shown in figure 10. Specifically, the
unsteadiness in the rate of influx of circulation is observed to be strongly dependent
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Figure 14. Amplitude of the unsteady influx, efflux and net rate of change of circulation.

on speed, with a maximum corresponding to the peak buffeting speed (U ∗ ≈ 2.7).
Despite these changes, the net unsteady circulation is almost completely determined
by the much larger unsteady efflux rate of vorticity.

Independent measurements of the resonator pressure, the impedance function (Z∗)
and the forcing function (F̂ ∗) that have been presented allow for an assessment of
the assumptions which leads to the simplified expression given in (2.9). First, the
amplitude of the resonator pressure fluctuations was estimated from F̂ ∗/Z∗

LEM (f ∗
p ).

These results are presented as open circles along with the directly measured pressure
amplitudes (solid line) in figure 15. The comparison is quite good over the speed
range. This agreement confirms that the values of F̂ ∗ obtained from the planar PIV
measurements are an accurate representation of the true forcing. Second, this result
also confirms that the function Z∗ measured from the two-step method without
the grazing flow provides a very good approximation of the impedance under
flow excitation. For reference, figure 15(a) shows the amplitude calculated from
the unsteady circulation approximation of the forcing as shown in (5.3). Lastly, the
resonator pressure was estimated from (2.5), where ξ̂ was evaluated directly from the
PIV velocity measurements. These latter approximations provide nominally the same
results for the resonator pressure fluctuations as the estimate based on F̂ ∗/Z∗

LEM (f ∗
p ).

The phase results from the measurements are shown in figure 15(b). The phase of
the measured impedance as well as the fitted Z∗

LEM are shown as solid curves. By

(2.9) the phase difference between F̂ ∗ and p̂∗
res should be equal to the phase of Z∗.

These data are shown for the directly measured F̂ ∗, as well as for Γ̂ ∗. The agreement
is quite good, particularly near f ∗ = 1, where the resonator pressure fluctuations are
the largest. This agreement provides additional evidence that the derivation of (2.9),
the assumption that Z∗(f ) can be obtained using a simple acoustic test and the use
of the PIV for measuring the forcing function are all reasonable approximations.

6. Prediction of resonator interior pressure
This section presents a method for predicting the resonator pressure fluctuations

as functions of the flow speed based on the framework presented. The results will
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Figure 15. Comparison of (a) the resonator pressure amplitude with various approximations
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be compared to the presently acquired measurements, as well as a variety of data
available in the literature. The first step of the method involves a model for the
determination of the frequency, f ∗

p , based on the phase of (2.9). Specifically, the phase
difference between the unsteady forcing and the resonator pressure is modelled as
−Stφ + π/2, where Stφ ≡ 2πfpL/Uc is a Strouhal number based on the convection

velocity. This modelling of the phase delay between F̂ ∗ and p̂∗
res was motivated in

the described manner: the forcing F̂ ∗ was shown to be equivalent to the unsteady
circulation in the region of the orifice, which is almost entirely dominated by the
unsteady efflux of vorticity. The vorticity convects across the orifice at a convection
speed of Uc, such that a time delay of L/Uc exists between the unsteady circulation
and velocity fluctuation dξ/dt . In the frequency domain, this time delay is reflected
by a phase lag of Stφ between the unsteady circulation and (dξ/dt)∧. An additional
phase difference of π/2 is added to relate the vertical velocity at the orifice and the
resonator pressure, based on (2.5) which was derived for an ideal Helmholtz resonator
subjected to harmonic disturbances. Substituting the phase model into (2.9) yields

F̂ ∗

p̂∗
res

=
|F̂ ∗|
|p̂∗

res |
e−i(Stφ−π/2) = Z∗. (6.1)
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The phase is balanced at discrete frequency values given by

−2πfpL

Uc

+
π

2
+ 2nπ = phase(Z∗(fp)), (6.2)

where n= 1 for the first mode; n= 2 for the second mode. Solving (6.2) for fp is
relatively straightforward for Uc and a known function Z∗(f ). However, it is of
interest to show the solution graphically by plotting the phase values from the two
sides of (6.2). This is shown in figure 16, using the phase values from both the
measured Z∗(f ∗) and Z∗

LEM . The straight lines are given for multiple values of Uc for
illustration. The intersection of these lines with the Z∗(f ∗) function is assumed to give
the correct peak frequency, f ∗

p . It is of interest to note that the solution to (6.2) will
provide a smooth function of f ∗

p as a function of Uc when using the fitted function
Z∗

LEM . In contrast, the solution using the measured Z∗ function will have discrete
jumps in the f ∗

p value as a result of the local maximum that occurs in the true Z∗

function. This is shown by the dashed line ‘d ’ in figure 16. There are also ranges of
Uc values (e.g. between lines ‘d ’ and ‘e’) at which there are multiple solutions. In these
cases the frequency that corresponds to the minimum value of Z∗ was used.

The prediction of the peak frequency as a function of U ∗ is given in figure 17. A
constant ratio of Uc/U = 0.38 was used for these calculations. The effects of this ratio
on the predictions is discussed below. Note that the ordinate is the frequency scaled
by the natural resonator frequency, f ∗

p = fp/fhr . The prediction is relatively good over
the speed range shown, including both the first and second modes. The discrete jumps
in peak frequency that have been observed in earlier discussions are also observed
in the predicted values when the true Z∗ function is used. Specifically, the resonator
constructed was shown to have a secondary local maximum at approximately f ∗ = 1.6
(see figure 4). Both the data and the model indicate that the frequency of the first
mode jumps to this secondary frequency value at a velocity slightly higher than that
of the peak amplitude. Although the speed of this jump is not predicted well, it is
clear from the graphical illustration in figure 16 that spectral smoothing will tend to
lower the magnitude of fluctuations in the phase plot and thus will alter the prediction
of the speed at which the frequency jumps occur.
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It is of interest to use the model given by (6.2) to study the effects of the resonator
characteristics on the resonance frequency. For example the peak frequency can be
considered as a function of the resonator quality factor Q, using the definition of
Z∗

LEM given in (2.7). These results are shown in figure 18 for values Q = 0, 11 and ∞
as functions of U ∗

c =Uc/fhrL. The condition Q =0 represents a resonator with infinite
damping, such that resonance cannot occur. As expected, the predicted frequency
follows a line of fpL/Uc =constant, illustrating that the shear layer is only subject to
the hydrodynamic instability frequency. In the opposite limit, Q = ∞ represents the
condition of no damping. Interestingly, the theory predicts that the peak frequency
follows the line f ∗

p = 5/4U ∗
c until the condition f ∗

p = 1 is reached. The resonator is
predicted to resonate at the natural frequency for a range of speeds until U ∗

c ≈ 1.33,
at which point the frequency increases with a constant slope of 3/4. The value Q = 11
represents the resonator described above. The straight line observed for the Q = ∞
case is shared by the Q =11 predictions at the lower speeds and well approximated
by the data presented in figure 17.

A prediction of the resonator pressure can be made based on the magnitude of the
terms in (2.9): |p̂∗

res | = |F̂ ∗|/|Z∗(fp)|. The frequency of resonance fp is known from
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(6.2), and thus Z∗(fp) is easily calculated for a given flow speed and resonator. The

only remaining unknown is the magnitude of the function |F̂ ∗|. The PIV measurements
indicate that the values are nearly constant with flow speed, with a mean value of
0.032. The results using this fixed value along with both the measured Z∗ and Z∗

LEM

are shown in figure 19. The predictions match the measured values in the mid-speed
range of velocities, where the resonator pressure fluctuations were the largest. At
higher velocity the values computed from Z∗

LEM are observed to decrease gradually,
while the data exhibit sudden ‘drops’ in amplitude at several speeds. The values
computed from the true Z∗ function are observed to capture the general character
of these features and match the amplitude over most of the speed range. Although
these ‘jumps’ in frequency and corresponding ‘drops’ in amplitude are not necessarily
of primary importance (since they are at speeds higher than the peak resonance)
the qualitative and quantitative agreements between the model and the data are
thought to provide substantial verification for (6.2) as well as the fact that |F̂ ∗| can
be considered constant.

The ability of the theory to match the frequency and amplitude of the resonator
pressure fluctuations that have been described in the literature will now be examined.
The comparison of the theory with the present measurements required that the ratio
of the net convection speed to the free stream velocity (Uc/U ) and the value of |F̂ ∗|
be specified. Rather than assume these parameters to be fixed for all experimental
conditions, it will be shown to be of value to allow these quantities to be used
as fitting parameters and then subsequently examine how the values depend on the
boundary conditions of a given experiment. It was found that matching the theoretical
prediction of f ∗

p (U ∗) to the data required an adjustment of the Uc/U value. From
this result, the function p̂∗

res (U
∗) was matched by adjusting the single constant used

for F̂ ∗. The data from Kook & Mongeau (2002), Panton (1990), Elder et al. (1982),
Meissner (2005), Graf & Durgin (1993) and Nelson et al. (1981) were taken from the
respective papers. The impedance was modelled as Z∗

LEM , based on published values
of fhr and Q. A sample of the predictions from the data of Kook & Mongeau (2002),
Nelson et al. (1981) and Panton (1990) is shown in figure 20. Predictions from the
other references noted were similar. These data show very good agreement in terms
of both the peak frequency of the resonance and the amplitude.
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Figure 21. Convection velocity data versus δ/L.

The values of Uc/U used to fit the theory to the measured values varied from
0.22 to 0.43. Despite this large variability, a strong correlation was found by plotting
Uc/U as a function of δ/L as shown in figure 21. The data show that increasing the
boundary layer thickness compared to the length of the window leads to a decrease in
the effective convection speed of the vorticity. A physical reasoning for this behaviour
can be given in the following manner: consider large δ/L, where only the vorticity
in close proximity to the orifice ‘participates’ in the resonance, and the outer regions
of the boundary layer convect far above the opening. This type of inner and outer
regions of a shear layer have been described by Morris & Foss (2003). Under these
conditions the speed of the vorticity in the inner portion of the boundary layer will
convect at a slower speed compared to a thin shear layer in which all of the boundary
layer vorticity is involved with the resonance. This reasoning can be used to obtain
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a model for Uc/U as a function of δ/L by assuming that there is a specific location
within the boundary layer whose mean velocity can be treated as an ‘effective’ free
stream speed. Specifically, the convection speed can be calculated from

Uc

U
=

1

2

u(y/L = 0.05)

U
=

1

2

(
0.05

δ/L

)1/7

, (6.3)

where the value of y/L = 0.05 was chosen to best fit the available data. The final
expression in (6.3) was found by replacing the mean velocity profile with a 1/7 power
law. The results of this expression are shown as the solid line in figure 21. Note that
for small δ/L (where y/L = 0.05 is outside the boundary layer), a constant value of
0.5 has been plotted.

As noted, a unique value of |F̂ ∗| was found for each available data set in order to
best match the measured p̂∗

res . These values were found to vary from 0.025 to 0.05
and are shown in figure 22 as functions of δ/L (for comparison with figure 21). No
visible trend was found with δ/L or any other independent variable related to the
geometry or acoustic properties of the cavity. A mean value of 0.036, with a standard
deviation of 0.008, was found. Although the variability could not be attributed to any
specific parameters, using the mean value to predict the resonator pressure fluctuations
resulted in a typical error of about 2–3 dB.

7. Conclusions
The analysis and experimental results presented provide a thorough description of

the interaction of grazing flow with a Helmholtz resonator. The most significant result
of the analysis is the simple relationship given in (2.9): p̂∗

res = F̂ ∗/Z∗, as derived from
linear momentum. The usefulness of this relationship stems from the interpretation
of F̂ ∗ as the hydrodynamic forcing term that is given by the unsteady circulation
contained within the domain of the orifice. The application of (2.9) required the
potentially restrictive assumption that the collection of terms represented by Z∗

could be obtained using acoustic excitation and that the magnitude and phase of Z∗

would not change in the presence of the grazing flow. Substantial verification of the
assumptions and interpretation was given by providing independent measurements
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of F̂ ∗ using the PIV system and comparing the measured values of p̂∗
res using a

microphone with the calculated values of F̂ ∗/Z∗ as shown in figure 15.
Additional confidence in the theoretical and experimental results was provided by

the ability of the model to predict the variations in frequency and magnitude of the
resonance that resulted from the multiple features of the true Z∗(f ) function. These
discrete ‘jumps’ were typically observed at speeds higher than the peak resonance
(U ∗ > 2.7). At lower speeds, however, a different behaviour was discovered in which
two distinct shear layer modes would be present intermittently. That is there is a
range of flow speeds for which both the first and second shear layer modes were
shown to be stable. The result is a random ‘mode switching’ as shown directly with
the time-resolved wavelet analysis.

A significant benefit of the model presented, aside from its predictive capacity,
was the ability to gain insight into the effects of the resonator characteristics on the
resulting dynamics. Specifically, it was shown that low values of Q lead to resonance at
a nearly constant value of f L/U , whereas high values of Q near the peak resonance
operate at nearly a fixed value of f/fhr . Similar observations can be made from the
data available in the literature.

A number of detailed observations and conclusions have been drawn from the PIV
measurements, shown as phase-averaged contours of the spanwise vorticity. Foremost
is the observation that the shear layer does not appear as either a flapping vortex
sheet or a discrete vortex. The flow does resemble a combination of these two ideals
in which the shear layer in the region closer to separation maintains a sheet-like
character, and the vorticity in the aft portion of the orifice tends to roll up into a
discrete vortex motion that is separated from the vorticity of the incoming boundary
layer. Regardless of these dynamics, however, the most important aspect of the shear
layer motion is the resulting fluctuations in the net circulation. The PIV data have led
to the surprising result that the net unsteady circulation does not vary considerably
with flow speed. Moreover, the mean value of 0.032 obtained from the PIV provides
an accurate prediction of the resonator pressure at a wide range of flow speeds and
is in close agreement with the average value of 0.036 obtained from all of the data
available in the literature.

The final point of discussion is the correlation found between the effective
convection speed of the vorticity (Uc/U ) and the boundary layer thickness (δ/L).
The modest scatter among the data presented in figure 21 considering the relatively
wide range of resonator types and flow configurations suggests that this is a unique
function that is not sensitive to the numerous parameters that are not accounted for
(e.g. Reynolds number).

The authors would like to thank Chrysler LLC (Mr. Mark Gleason and Mr.
Mitchell Puskarz) for their support of this work.

Appendix. Feedback loop analysis and describing function theory
Feedback loop analysis considers the use of transfer functions to represent the flow

excitation and the acoustic response of the resonator in the frequency domain to form
a feedback loop. In this loop the flow excitation is regarded as the forward function,
and the resonator acoustic response is considered to be the feedback. This requires
that the total volume flow rate q̂ (q̂ ≡ (dξ/dt)∧S) to be split into a ‘flow component
q̂o and an ‘acoustic component q̂r as follows:

q̂ = q̂o + q̂r . (A 1)
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The forward gain function is then expressed as the complex ratio of the flow volume
flow q̂o’ and the acoustic volume flow q̂r ’. The backward gain function is simply the
complex ratio of the acoustic volume flow, q̂r , and the flow volume flow, q̂o. The
method of using frequency–response functions to represent each of those elements by
which a nonlinear system is modelled is called describing function analysis.

Provided that the forward and backward gain functions can be properly modelled,
the frequency and amplitude of the limit cycle (stable solution) of the resonator system
for a given free stream speed can be obtained by graphically solving the following
equation representing the self-consistent condition of the closed feedback loop:(

q̂o

q̂r

)
f

(
q̂r

q̂o

)
b

= 1. (A 2)

Different models of the forward and backward gain functions have been proposed
in the literature. The most recent work by Mast & Pierce (1995) and Kook & Mongeau
(2002) is described here. Since one unknown q̂ is split into two unknowns q̂o and q̂r ,
following additional equation was introduced by Mast & Pierce (1995):

q̂o =
p̂extS

2

i2πf M
=

p̂ext

ZM

. (A 3)

Here p̂ext denotes the nominal excitation ‘pressure due to the grazing flow and is
equal to F̂ /L, and ZM denotes the acoustic impedance due to the mass M . In this
equation, all the acoustic effects including radiation and resonance are neglected, and
the resonator opening is considered as a purely mass-like impedance for flow-induced
p̂ext and the associated flow volume velocity q̂o. This additional equation basically
helps to determine how much q̂o and q̂r contribute respectively to the total q̂ at
different frequencies.

The backward gain function proposed by Mast & Pierce (1995) can be rewritten as(
q̂r

q̂o

)
b

=
ZM − Za

Za

, (A 4)

where Za denotes the the acoustic impedance of the system, which is equal to
(−4πf 2M + i2πf R + K)/(i2πf S2). After substituting (A 1) and (A 3) back into it, the
backward function (A 3) yields:

p̂ext

q̂
= Za, (A 5)

which is the same as (2.9).
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